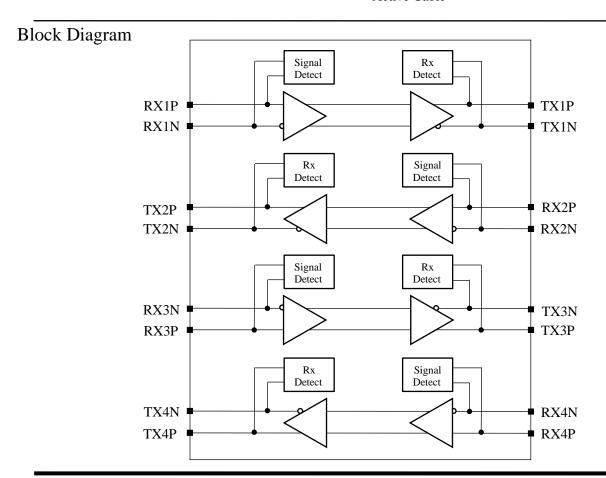


THCX422R10

USB 3.2 Re-driver with Linear Equalization

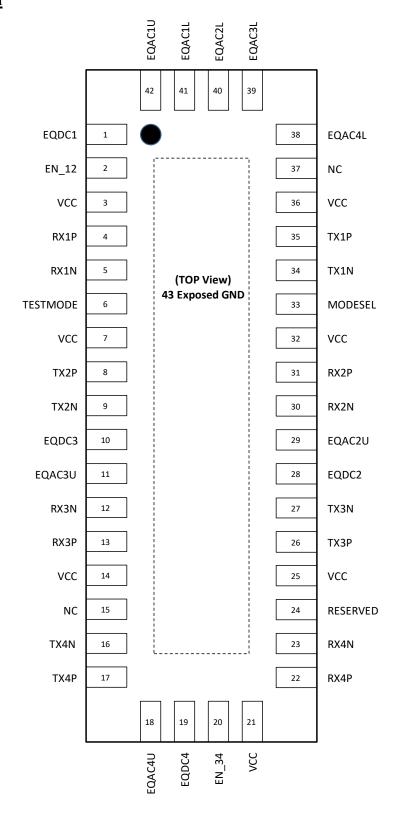
General Description

The THCX422R10 is high performance bidirectional active re-driver for serial links with data rates up to 10Gbps.


The THCX422R10 feature a continuous time linear equalizer (CTLE) to provide a boost of up to +15.6dB at 5GHz and open an input eye that is completely closed due to inter-symbol interference (ISI) induced by the inter-connect mediums.

Features

- Signal Conditioning with Linear Equalizer
- Linear Equalization up to +15.6dB@5GHz
- Adjustable Voltage Output Swing Linear Range
- Adjustable Receiver Equalization and DC Gain
- Support USB 3.1 Gen2 and USB 3.2
 - Receiver and LFPS Detect
- Single Supply Voltage (3.3V)
- Package: QFN42 (3.5mm x 9.0mm)


Applications

- USB 3.x
- Tablets, Laptops, Monitors, Phones
- USB Host and Devices
- Docking Stations
- Active Cable

Pin Configuration

Pin Description

I III Description			
Pin Name	Pin No	Type	Description
RX1P,RX1N	4, 5	CI	High-Speed CML Signal Input (Channel1(=CH1))
TX1P,TX1N	35, 34	CO	High-Speed CML Signal Output (CH1)
RX2P,RX2N	31, 30	CI	High-Speed CML Signal Input (Channel2(=CH2))
TX2P,TX2N	8, 9	CO	High-Speed CML Signal Output (CH2)
RX3P,RX3N	13, 12	CI	High-Speed CML Signal Input (Channel3(=CH3))
TX3P,TX3N	26, 27	CO	High-Speed CML Signal Output (CH3)
RX4P,RX4N	22, 23	CI	High-Speed CML Signal Input (Channel4(=CH4))
TX4P,TX4N	17, 16	CO	High-Speed CML Signal Output (CH4)
EN_12	2	IPU	Channel Enable(CH1, CH2) With internal 480kΩ pull-up resistor 0 : Power Down 1 : Normal Operation
EN_34	20	IPU	Channel Enable(CH3, CH4) With internal 480kΩ pull-up resistor 0 : Power Down 1 : Normal Operation
EQAC1U	42	4LI	CH1 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC1L allows for up to 16 settings
EQAC1L	41	4LI	CH1 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC1U allows for up to 16 settings(default 1)
EQAC2U	29	4LI	CH2 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC2L allows for up to 16 settings
EQAC2L	40	4LI	CH2 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC2U allows for up to 16 settings(default 1)
EQAC3U	11	4LI	CH3 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC3L allows for up to 16 settings
EQAC3L	39	4LI	CH3 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC3U allows for up to 16 settings(default 1)
EQAC4U	18	4LI	CH4 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC4L allows for up to 16 settings
EQAC4L	38	4LI	CH4 Rx Equalizer Peak Gain & High Linear Mode setting This pin along with EQAC4U allows for up to 16 settings(default 1)
EQDC1	1	4LI	CH1 Equalizer DC Gain setting
EQDC2	28	4LI	CH2 Equalizer DC Gain setting
EQDC3	10	4LI	CH3 Equalizer DC Gain setting
EQDC4	19	4LI	CH4 Equalizer DC Gain setting
MODESEL	33	4LI	Chip Operation Mode Select 1: CH1/2, CH3/4 enable, RxDetect/SignalDetect enable F: CH1/2, CH3/4 enable, RxDetect enable, SignalDetect disable R: CH1/2, CH3/4 enable, RxDetect/SignalDetect disable 0: CH1,3 enable, CH2,4 disable, RxDetect/SignalDetect disable
NC	15, 37	-	Non Connection pin. Must be open
RESERVED	24	ı	Must be tied to VCC
TESTMODE	6	I	Test Mode Entry 1 : Normal Operation 0 : Test Mode
VCC	3, 7, 14, 21, 25, 32, 36	PWR	Power supply pin for on-chip regulator.
GND	43	GND	Exposed Pad Ground
			1 CC I I I I CO I (1 CC

CI: CML Input buffer, CO: CML Output buffer, I: LVCMOS Input buffer

IPU: LVCMOS Input buffer. With internal $480 k\Omega$ pull-up resistor.

4LI: 4-Level LVCMOS Input buffer. With internal $180k\Omega$ pull-up resistor and $300k\Omega$ pull-down resistor.

0: Tie 0Ω to GND R: Tie $180k\Omega$ to GND F: Leave Open 1: Tie 0Ω to VCC

PWR: Power supply, GND: Ground

Functional Overview

The function that THCX422R10 has below item.

- 4ch Re-driver
- · Signal Detection and Receiver Termination Detection designated for USB3.x
- · Signal Conditioning with Linear Equalizer
- Single Supply Voltage (3.3V)

Operation Mode Settings

The operation mode setting is showed below.

Table 1 Operation Mode Setting

	Pin Settings		Operation Mode		
EN_12	EN_34	MODESEL	Operation Mode		
		0(*1)	CH1,3 Enable, CH2,4 Disable, RxDetect Disable, SignalDetect Disable		
1	1	R(*2)	CH1,2,3,4 Enable, RxDetect Disable, SignalDetect Disable		
l '	'	F(*3)	CH1,2,3,4 Enable, RxDetect Enable, SignalDetect Disable		
		1(*4)	CH1,2,3,4 Enable, RxDetect Enable, SignalDetect Enable		
1	0	-	Forbidden		
0	1	-	Forbidden		
0	0	Ignore	Chip Power Down.		

^{*1} Tie 0Ω to GND

Detect Function

THCX422R10 has Input Signal Detect (SignalDetect) and Receiver Detect (RxDetect) functionality for USB3.x transmission.

Detect functionality must be disable when it is not USB3.x application.

^{*2} Tie $180k\Omega$ to GND

^{*3} Leave Open

^{*4} Tie 0Ω to VCC

Linear Equalizer Settings

Table 2 Equalization and -1dB Compression Point Linear Swing Settings

			Equalizer Settings (dB)	Output Linear Swing Settings (mVppd)		
EQACnU*1	EQACnL*1	EQDCn*1	@1.5GHz / 2.5GHz / 5GHz	@100MHz	@5GHz	
0	0		1.2 / 3.0 / 7.6			
0	R		1.8 / 4.1 / 9.0			
R	0		2.0 / 4.4 / 10.2	<u> </u>		
R	R	0	2.6 / 5.4 / 11.3	830	760	
F	0	U	2.7 / 5.8 / 12.3	030	700	
F	R		3.4 / 6.7 / 13.3			
1	0		3.6 / 7.1 / 13.9			
1	R		4.2 / 7.9 / 14.5			
0	0		1.9 / 3.5 / 7.7			
0	R		2.5 / 4.4 / 9.2			
R	0		2.6 / 4.8 / 10.3			
R	R	R	3.2 / 5.7 / 11.4	830	760	
F	0	1.	3.3 / 6.1 / 12.4		700	
F	R		3.9 / 7.0 / 13.4	-		
1	0		4.1 / 7.4 / 14.0	-		
1	R		4.6 / 8.2 / 14.6			
0	0		3.0 / 4.2 / 7.6			
0	R		3.5 / 5.0 / 9.2			
R	0		3.6 / 5.4 / 10.2			
R	R	F	4.1 / 6.1 / 11.4	830	760	
F	0	•	4.2 / 6.5 / 12.3		700	
F	R		4.7 / 7.3 / 13.2			
1	0		4.8 / 7.7 / 13.9	_		
1	R		5.3 / 8.4 / 14.4			
0	0		6.4 / 6.8 / 8.6	-		
0	R		6.6 / 7.3 / 9.8	-		
R	0		6.7 / 7.6 / 10.8	<u> </u>		
R	R	1	7.0 / 8.1 / 11.8	830	760	
F	0	-	7.1 / 8.4 / 12.7			
F	R		7.4 / 9.0 / 13.5	_		
1	0		7.5 / 9.3 / 14.1	_		
1	R		7.8 / 9.8 / 14.7			
0	F		2.5 / 4.3 / 8.5			
0	1		3.2 / 5.3 / 9.9			
R	F		3.4 / 5.6 / 11.0			
R	1	0	4.0 / 6.5 / 12.1	1200	1000	
F	F		4.0 / 6.9 / 13.2			
F	1		4.7 / 7.9 / 14.1			
1	F		4.9 / 8.2 / 14.8			
1	1 -		5.4 / 9.0 / 15.5			
0	F		3.2 / 4.8 / 8.6			
0	1		3.8 / 5.7 / 10.0			
R	F		4.0 / 6.0 / 11.1	1200		
R	1	R	4.5 / 6.9 / 12.3		1000	
F	F		4.6 / 7.2 / 13.3			
F	1		5.2 / 8.1 / 14.2			
1	F		5.3 / 8.5 / 14.9			
1	1		5.9 / 9.2 / 15.6			

Average of all channels in typical condition

*1 n=1,2,3,4

EQACnU*1	EQACnL*1	EQDCn*1	Equalizer Settings (dB)	Output Linear Swin	g Settings (mVppd)	
EQACIO	EQACIL		@1.5GHz / 2.5GHz / 5GHz	@100MHz	@5GHz	
0	F		4.3 / 5.5 / 8.7			
0	1		4.8 / 6.3 / 10.0			
R	F		4.9 / 6.6 / 11.0			
R	1	F	5.4 / 7.3 / 12.2	1200	1000	
F	F	Г	5.5 / 7.7 / 13.2	1200	1000	
F	1		5.9 / 8.5 / 14.1			
1	F		6.1 / 8.8 / 14.7			
1	1		6.5 / 9.5 / 15.4			
0	F		7.7 / 8.1 / 9.5			
0	1		8.0 / 8.6 / 10.7			
R	F		8.1 / 8.8 / 11.6			
R	1	4	8.3 / 9.3 / 12.7	1200	1000	
F	F	1	8.4 / 9.6 / 13.5	1200	1000	
F	1		8.7 / 10.1 / 14.4			
1	F		8.8 / 10.4 / 15.0			
1	1		9.0 / 10.9 / 15.6			

Average of all channels in typical condition

*1 n=1,2,3,4

Table 3 Flat Gain Settings

EQDCn*1	Flat Gain Settings (dB) @Up to 300MHz				
EQUUII	EQACn*1L=0/R	EQACn*1L=F/1			
0	-2.6	-1.2			
R	-1.7	-0.3			
F	-0.2	1.3			
1	3.8	5.2			

Average of all channels in typical condition

*1 n=1,2,3,4

-1dB Compression Point is showed below. It means output voltage range that has linearity.

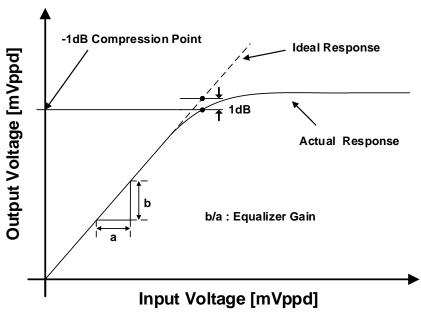


Figure 1. -1dB Compression Point

Absolute Maximum Ratings

Table 4 Absolute Maximum Ratings

Par	ameter	Min	Тур	Max	Unit
Supply V	oltage(VCC)	-0.3	-	4.0	V
LVCMOS Inpu	ut/Output Voltage	-0.3	-	VCC+0.3	V
4-Level LVCM	OS Input Voltage	-0.3	-	VCC+0.3	V
CML Receive	er Input Voltage	-0.3	-	VCC+0.3	V
CML Transmitt	er Output Voltage	-0.3	-	VCC+0.3	V
	HBM	-	-	±4	kV
ESD Rating	MM	-	-	±200	V
	CDM	-	-	±1000	V
Storage ⁻	Storage Temperature		-	125	°C
Junction ¹	Junction Temperature		-	125	°C
Reflow Peak 1	emperature/Time	-	-	260/10	°C/sec

Recommended Operating Conditions

Table 5 Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Supply Voltage(VCC)	3.0	3.3	3.6	V
Supply Ramp Requirement	0.1	-	50	ms
Operating Temperature	-40	-	85	°C

Equivalent CML Input Schematic Diagram

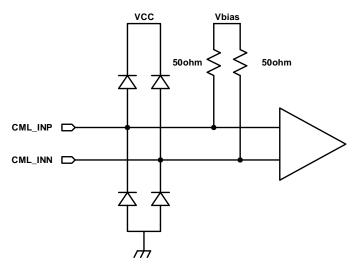


Figure 2. CML Input Schematic Diagram

Equivalent CML Output Schematic Diagram

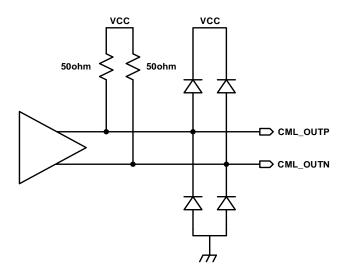


Figure 3. CML Output Schematic Diagram

Equivalent LVCMOS Input Schematic Diagram

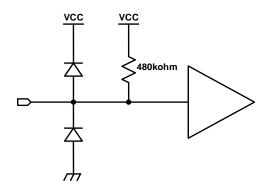


Figure 4. LVCMOS Input Schematics Diagram

Equivalent 4-Level LVCMOS Input Schematic Diagram

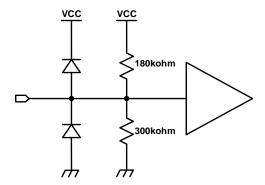


Figure 5. 4-Level Input Schematics Diagram

Electrical Specification

Supply Current

Table 6 Supply Current

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
ICCW	Active Made Supply Current	EQACn*1U=F/1	-	220	280	mA
ICCVV	Active Mode Supply Current	EQACn*1U=0/R	-	180	240	mΑ
ICCSL	Slumber Mode Supply Current	No Input signal	-	90	135	mΑ
ICCI	Unplug Mode Supply Current	No Output load	-	2.0	2.6	mΑ
ICCS	Power Down Supply Current	EN_12/34=0	-	270	550	uA

*1 n=1,2,3,4

LVCMOS DC Specification

Table 7 LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIH	High Level Input Voltage	-	2.0	-	VCC	V
VIL	Low Level Input Voltage	-	0	-	0.7	V

4-Level LVCMOS DC Specification

Table 8 4-Level LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{THL}	Low Level Input Voltage	0(*1)	0	-	VCC*0.25 - 0.3	V
V_{THR}	R-Level Input Voltage	R(*2)	VCC*0.25 + 0.3	-	VCC*0.5 - 0.3	V
V _{THF}	F-Level Input Voltage	F(*3)	VCC*0.5 + 0.3	-	VCC*0.75 - 0.3	V
Vтнн	High Level Input Voltage	1(*4)	VCC*0.75 + 0.3	-	VCC	V
I _{IH_4} L	High level Input Leak Current	VIN=VCC	-100	-	100	uA
I _{IL} 4L	Low Level Input Leak Current	VIN=GND	-100	-	100	uA

^{*}Must be tied for setting each level

*1 : Tie 0Ω to GND

*2 : Tie $180k\Omega\pm5\%$ to GND

*3 : Leave pin open *4 : Tie 0Ω to VCC

Receiver DC/AC Specification

Table 9 Receiver DC/AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vin-diff-pp	AC Coupled Differential Input Peak to Peak Signal	10Gbps PRBS9	-	-	1200	mV
R _{RX-DC}	Receiver DC Common Mode Impedance	-	-	30	-	Ω
R _{RX-DIFF-DC}	DC Differential Impedance	-	72		120	Ω
RRX-HIGH-IMP-DC- POS	DC Input CM Input Impedance for V>0	-	25	-	-	kΩ
RL _{RX-DIFF}	Rx Differential Return Loss	0.05 to 5 GHz	-	-7	-	dB
RL _{RX-CM}	Rx Common Mode Return Loss	0.05 to 5 GHz	-	-6	-	dB

Copyright(C)2019 THine Electronics,Inc.

THine Electronics, Inc.

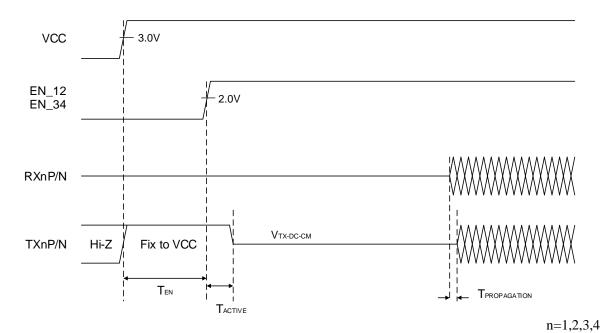
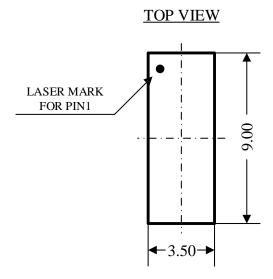
Transmitter DC / AC Specifications

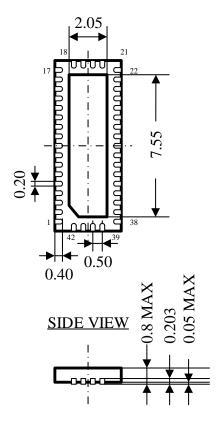
Table 10 Transmitter DC / AC specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter Parameter	Condition	Min	Тур	Max	Unit
T _{TX-DJ-DD}	Deterministic Jitter	Loss=18dB@5GHz	_	0.25	-	Ulpp
T _{TX-RJ-DD}	Random Jitter	-	-	0.5	-	ps RMS
T _{TX-RISE-FALL}	Tx Rise/Fall Time	20% to 80 %	-	40	-	ps
T _{RF-MISMATCH}	Tx Rise/Fall Mismatch	-	-	0.01	-	UI
RL _{TX-DIFF}	Tx Differential Return Loss*1	0.05 to 5 GHz	-	-10	-	dB
RL _{TX-CM}	Tx Common Mode Return Loss*1	0.05 to 5 GHz	-	-6	-	dB
RTX-DIFF-DC	DC Differential Impedance	-	72	-	120	Ω
VTX-RCV-DETECT	The Amount of Voltage Change Allowed during Receiver Detection	-	-	-	0.6	V
Vтх-dc-см	Transmitter DC Common-mode Voltage	-		VCC- 0.8	-	٧
VTX-CM-AC-PP_ACTIVE	Transmitter AC Common-mode Voltage Active	-		-	100	m∨pp
VTX-IDLE-DIFF-AC-pp	Electrical Idle Differential Peak- Peak Output Voltage	-	0	-	10	mV
VTX-IDLE-DIFF-DC	DC Electrical Idle Differential Output Voltage	-	0	•	10	mV
C _{TX-PARASITIC}	Tx Input Capacitance	-	-	-	1.1	pF
T _{EN}	Power On to EN_12/34 High Delay	-	0	-	-	ns
T _{ACTIVE}	EN_12/34 High to Active Delay	-	-	-	200	us
TPROPAGATION	Differential Propagation Delay	-	-	150	-	ps

^{*1} Confirmed evaluation board.


Figure 6. Power on Sequence (SignalDetect Disable/ RxDetect Disable)

Package

BOTTOM VIEW

Unit: mm

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.
- 3. This material contains THine's copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without THine's prior permission is prohibited.
- 4. Note that even if infringement of any third party's industrial ownership should occur by using this product, THine will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. Product Application
- 5.1 Application of this product is intended for and limited to the following applications: audio-video device, office automation device, communication device, consumer electronics, smartphone, feature phone, and amusement machine device. This product must not be used for applications that require extremely high-reliability/safety such as aerospace device, traffic device, transportation device, nuclear power control device, combustion chamber device, medical device related to critical care, or any kind of safety device.
- 5.2 This product is not intended to be used as an automotive part, unless the product is specified as a product conforming to the demands and specifications of IATF16949 ("the Specified Product") in this data sheet. Thine accepts no liability whatsoever for any product other than the Specified Product for it not conforming to the aforementioned demands and specifications.
- 5.3 THine accepts liability for demands and specifications of the Specified Product only to the extent that the user and THine have been previously and explicitly agreed to each other.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act.
- 10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses.

THine Electronics, Inc.

sales@thine.co.jp https://www.thine.co.jp