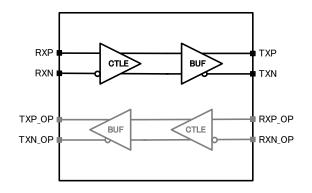


THCV2911B

V-by-One® HS Redriver with Linear Equalization


General Description

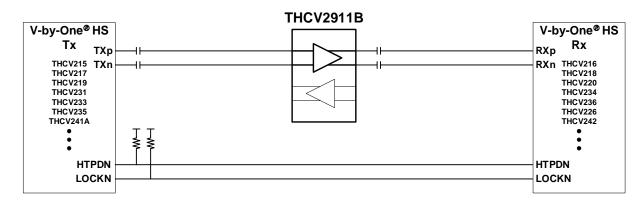
The THCV2911B is low power, high performance active redriver for V-by-One[®] HS with data rates up to 4Gbps. The THCV2911B pinout is configured as a forward and sub channels.

The THCV2911B features a powerful 18-stages continuous time linear equalizer (CTLE) to provide a boost of up to +10.6dB at 2GHz and open an input eye that is completely closed due to inter-symbol interference (ISI) induced by the inter-connect mediums such as cable or FR-4.

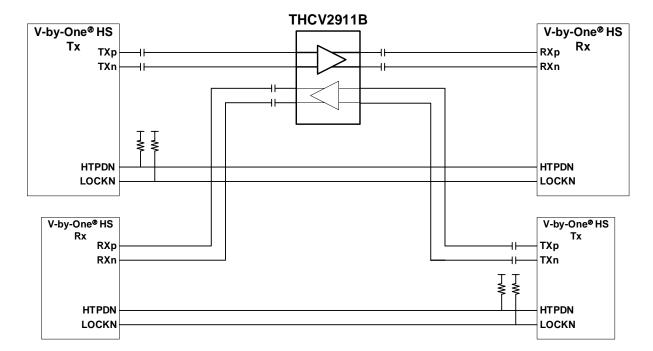
The programmable settings can be applied via pin configurations which eliminates the needs for an external microprocessor and software driver.

Block Diagram

Features

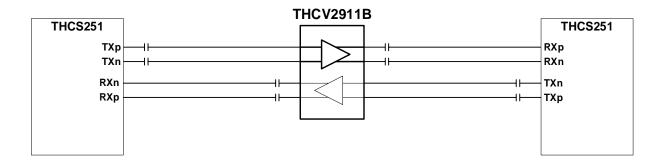

- Signal Conditioning with Linear Equalizer
- A forward and optional lane Redriver for up to 4 Gbps
- Linear Equalization up to +10.6dB@2GHz
- Adjustable Receiver Equalization and DC Gain
- Programmable via Pin Selection
- Flow-Thru Pinout
- Single Supply Voltage (3.3V)
- ESD HBM $< \pm 4kV$
- Package : QFN30 (2.5mm x 4.5mm)
- -40 to 105°C Operating Temperature

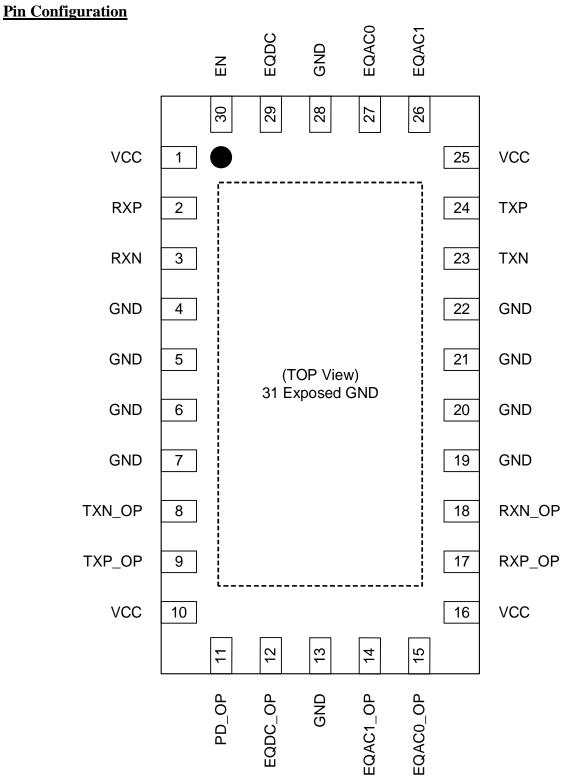
Applications


All V-by-One[®] HS applications for reach extension such as

- Digital Signage
- Digital blackboard
- Multi-Function Printer
- Production Printer
- Medical imaging
- Machine vision
- Image Sensor
- Camera
- Active Cable

Typical Application





Optional Application

Optional Application with THCS251

Copyright(C)2023 THine Electronics, Inc.

Pin Description

Pin Name Pin No Type Description RXP 2 CI High-Speed CML Signal Input of Main-Lane				
2	CI	High-Speed CML Signal Input of Main-Lane		
3	CI	High-Speed CML Signal Input of Main-Lane		
24	CO	High-Speed CML Signal Output of Main-Lane		
23	CO	High-Speed CML Signal Output of Main-Lane		
17	CI	High-Speed CML Signal Input of Optional-Lane(OP)		
18	CI	High-Speed CML Signal Input of OP		
9	CO	High-Speed CML Signal Output of OP		
8	CO	High-Speed CML Signal Output of OP		
30	I	Channel Enable. 0 : Power Down 1 : Normal Operation		
26	3LI	Main Rx Equalizer Peak Gain Setting		
20	(*1)	This pin along with EQAC0 allows for up to 6 settings.		
27	3LI	Main Rx Equalizer Peak Gain Setting		
21	(*1)	This pin along with EQAC1 allows for up to 6 settings.		
14	3LI	OP Rx Equalizer Peak Gain Setting		
17		This pin along with EQAC0_OP allows for up to 6 settings.		
15		OP Rx Equalizer Peak Gain Setting		
10		This pin along with EQAC1_OP allows for up to 6 settings.		
29	3LI (*1)	Main Equalizer DC Gain Setting		
12	3LI (*1)	OP Equalizer DC Gain Setting		
11	3LI (*1)	Chip Operation Mode Select, if EN=1 F : OP Enable, 1 : OP Disable,		
1, 10, 16, 25	PWR	Power Supply Pin for On-chip Regulator.		
4,5,6,7,13, 19,20,21,	GND	Ground. Must be tied to the PCB ground plane through an array of vias. Pin#31 is exposed pad ground.		
	2 3 24 23 17 18 9 8 30 26 27 14 15 29 12 11 1, 10, 16, 25 4,5,6,7,13,	2 CI 3 CI 24 CO 23 CO 17 CI 18 CI 9 CO 30 I 26 3LI (*1) 27 3LI (*1) 14 (*1) 29 3LI (*1) 12 3LI (*1) 11 3LI (*1) 12 GND		

CI: CML Input Buffer, CO: CML Output Buffer I: LVCMOS Input Buffer, 3LI: 3-Level LVCMOS Input Buffer, PWR: Power Supply, GND: Ground

*1 : 3-Level Input Buffer. With internal $180 k\Omega$ pull-up resistor and $300 k\Omega$ pull-down resistor.

Operation Mode Settings

Table 1. Operation Mode Settings

Pin S	Settings	Operation Made			
EN	PD_OP	Operation Mode			
	0(*1)	Reserved			
1	F(*2)	OP Enable			
	1(*3)	OP Disable			
0	Ignore	Chip Power Down.			

*1 Tie 0Ω to GND

*2 Leave pin Open

*3 Tie 0Ω to VCC

Linear Equalizer Settings

					alizer Setting	s (dB)															
EQAC1(_OP)	EQAC0(_OP)	EQDC(_OP)	Up to 0.1GHz	@0.5GHz (1Gbps)	@1.0GHz (2Gbps)	@1.5GHz (3Gbps)	@2.0GHz (4Gbps)														
0	*	*			Reserved																
F	0			0.2	0.8	1.2	1.6														
F	F			0.5	1.7	2.7	3.7														
F	1	0	-0.9	0.6	2.1	3.5	4.8														
1	0	0	-0.9	0.8	2.4	4.0	5.5														
1	F			1.3	3.7	5.9	7.9														
1	1			1.5	4.2	6.6	8.8														
F	0	F		2.6	3.1	3.4	3.5														
F	F			2.8	3.7	4.4	5.1														
F	1		F	F	F	F	F 1.6	F	F 1.6	-	-	F	F	F	F	E	1.6	2.9	4.1	5.0	6.0
1	0									1.0	3.0	4.3	5.4	6.6							
1	F							3.4	5.2	6.9	8.6										
1	1			3.5	5.6	7.5	9.4														
F	0			6.5	6.8	6.9	6.8														
F	F			6.6	7.2	7.5	7.9														
F	1	1	57	6.7	7.4	7.8	8.3														
1	0	I	5.7	6.7	7.5	8.1	8.7														
1	F		1		6.9	8.0	9.1	10.2													
1	1			7.0	8.2	9.5	10.6														

Table 2. Linear Equalizer Settings

Average of all channels in typical condition

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings

Par	Parameter		Тур	Max	Unit
Supply V	Supply Voltage(VCC)			4.0	V
	ut/Output Voltage	-0.3	-	VCC+0.3	V
3-Level LVCM	IOS Input Voltage	-0.3	-	VCC+0.3	V
CML Receiv	CML Receiver Input Voltage			VCC+0.3	V
CML Transmitt	CML Transmitter Output Voltage		-	VCC+0.3	V
ESD Boting	HBM	-	-	±4	kV
ESD Rating	CDM	-	-	±1000	V
Storage	Temperature	-55	-	125	°C
Junction	Junction Temperature		-	125	°C
Reflow Peak 1	Temperature/Time	-	-	260/10	°C/sec

<u>Recommended Operating Conditions</u>

Table 4. Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Supply Voltage(VCC)	3.0	3.3	3.6	V
Supply Ramp Requirement	0.1	-	50	ms
Operating Temperature	-40	-	105 85(*1)	°C

(*1) PD_OP=F

Equivalent CML Input Schematic Diagram

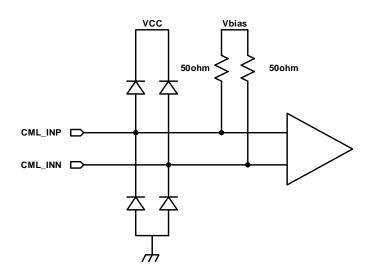


Figure 1. CML Input Schematic Diagram

Equivalent CML Output Schematic Diagram

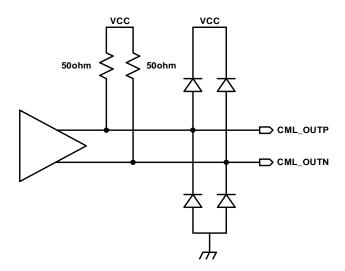


Figure 2. CML Output Schematic Diagram

Equivalent LVCMOS Input Schematic Diagram

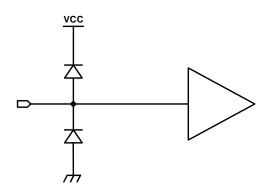


Figure 3. LVCMOS Input Schematics Diagram

Equivalent 3-Level LVCMOS Input Schematic Diagram

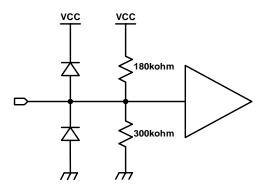


Figure 4. 3-Level Input Schematics Diagram

Electrical Specification

Supply Current

Table 5. Supply Current

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	ICCW Active Mode Supply Current	PD_OP=1	-	58	84	mA
1000	Active Mode Supply Current	PD_OP=F	-	84	106	mA
ICCS	Power Down Supply Current	-	-	120	180	uA

LVCMOS DC Specification

Table 6. LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIH	High Level Input Voltage	-	2.0	-	VCC	V
VIL	Low Level Input Voltage	-	0	-	0.7	V

3-Level LVCMOS DC Specification

Table 7. 3-Level LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VTHL	Low Level Input Voltage	0(*1)	0	-	VCC*0.25 - 0.3	V
VTHF	F-Level Input Voltage	F(*2)	VCC*0.5 + 0.3	-	VCC*0.75 - 0.3	V
Vтнн	High Level Input Voltage	1(*3)	VCC*0.75 + 0.3	-	VCC	V
I _{IH_3L}	High level Input Leak Current	VIN=VCC	-100	-	100	uA
I _{IL_3L}	Low Level Input Leak Current	VIN=GND	-100	-	100	uA

Receiver DC Specification

Table 8. Receiver DC Specification

Over recommended operating supply and temperature range unless otherwise specified

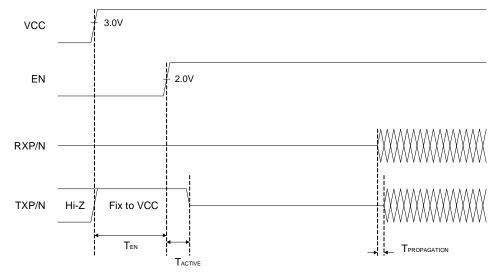
Symbol	Parameter	Condition	Min	Тур	Max	Unit
VRTH	CML Differential Input High Threshold	-	-	-	50	mV
VRTL	CML Differential Input Low Threshold	-	-50	-	-	mV
IRIH	CML Input Leak Current High	EN=0,RXP/N=VCC	-10	-	10	uA
IRIL	CML Input Leak Current Low	EN=0,RXP/N=GND	-10	-	10	uA
RRIN	CML Differential Input Resistance	-	-	100	-	Ω

Transmitter DC Specifications

Table 9.Transmitter DC Specifications

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VTOC	CML Common mode Output Voltage	-	-	VCC-0.75	-	V
ІТОН	CML Output Leak Current High	EN=0	-	-	50	uA



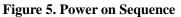

AC Specifications

Table 10. AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{EN}	Power On to EN High Delay	-	0	-	-	ns
T _{ACTIVE}	EN High to Active Delay	-	-	-	200	us
TPROPAGATION	Differential Propagation Delay	-	-	150	-	ps
$\Delta T_{PROPAGATION}$	Delta Propagation Delay	-	-	-	40	ps

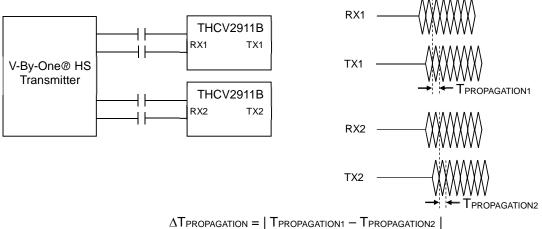


Figure 6. CML Propagation Delay Timing

Table 11. Transmitter AC Specification

_	Over recommended operatin	g supply and tempera	ture rang	ge unless	otherwis	se specified
Symbol	Parameter	Condition	Min	Тур	Max	Unit
tTRF	Tx Rise/Fall Time	20% to 80 %	50	-	150	ps

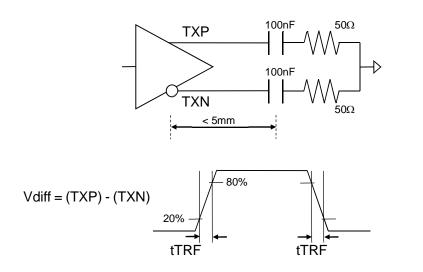
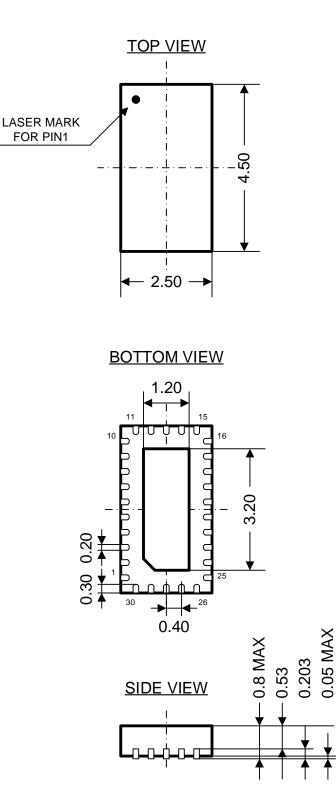



Figure 7. CML Output Switching Timing and Test Circuit

Package

Unit: mm

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.
- 3. This material contains THine's copyright, know-how or other intellectual property rights. Copying, reverse-engineer or disclosing to third parties the contents of this material without THine's prior written permission is prohibited.
- 4. THINE ACCEPTS NO LIABILITY FOR ANY DAMAGE OR LOSS IN CONNECTION WITH ANY DISPUTE RELATING TO INTELLECTUAL PROPERTY RIGHTS BETWEEN THE USER AND ANY THIRD PARTY, ARISING OUT OF THIS PRODUCT, EXCEPT FOR SUCH DAMAGE OR LOSS IN CONNECTION WITH DISPUTES SUCCESSFULLY PROVED BY THE USER THAT SUCH DISPUTES ARE DUE SOLELY TO THINE. NOTE, HOWEVER, EVEN IN THE AFOREMENTIONED CASE, THINE ACCEPTS NO LIABILITY FOR SUCH DAMAGE OR LOSS IF THE DISPUTE IS CAUSED BY THE USER'S INSTRUCTION.
- 5. This product is not designed for applications that require extremely high-reliability/safety such as aerospace device, nuclear power control device, or medical device related to critical care, excluding when this product is specified for automotive use by THine and used it for that purpose. THine accepts no liability whatsoever for any damages, claims or losses arising out of the uses set forth above.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently fail-safe design principles such as redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. This product may be permanently damaged and suffer from performance degradation or loss of mechanical functionality if subjected to electrostatic charge exceeding capacity of the ESD (Electrostatic Discharge) protection circuitry. Safety earth ground must be provided to anything in contact with the product, including any operator, floor, tester and soldering iron.
- 8. Please note that this product is not designed to be radiation-proof.
- 9. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 10. This product must be stored according to storage method which is specified in this specifications. Thine accepts no liability whatsoever for any damage or loss caused to the user due to any storage not according to above-mentioned method.
- 11. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act in Japan and the Export Administration Regulations in the United States of America on export or transit of this product. This product is prohibited for the purpose of developing military modernization, including the development of weapons of mass destruction (WMD), and the purpose of violating human rights.
- 12. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses. Thin accepts no liability whatsoever for any damage or loss caused to the user due to use under a condition exceeding the limiting values.
- 13. All patents or pending patent applications, trademarks, copyrights, layout-design exploitation rights or other intellectual property rights concerned with this product belong to THine or licensor(s) of THine. No license or right is granted to the user for any intellectual property right or other proprietary right now or in the future owned by THine or THine's licensor. The user must enter into a license agreement with THine or THine's licensor to be granted of such license or right.

THine Electronics, Inc. https://www.thine.co.jp