

THC63LVDR84C

24bit Color LVDS Receiver (Rising Edge Strobe Output)

General Description

The THC63LVDR84C receiver supports wide temperature range as -40 to +85°C, and wide frequency range as 8 to 112MHz.

The THC63LVDR84C converts the four LVDS data streams back into 24bits of LVCMOS data with Rising edge clock. At a transmit clock frequency of 112MHz, 24bits of RGB data and 4bits of timing and control data (HSYNC, VSYNC, DE, etc.) are transmitted at an effective rate of 3.1Gbps.

Application

- ·Medium and Small Size Panel
- · Security Camera
- · Multi Function Printer
- ·Machine Vision (Frame Grabber Board)
- · Medical Equipment Monitor

Features

- •1:7 LVDS to LVCMOS Deserializer
- •Operating Temperature Range: -40 to +85°C
- · No Special Start-up Sequence Required
- Spread Spectrum Clocking Tolerant up to 100kHz Frequency Modulation and +/-2.5% Deviations
- ·Pixel Clock Range: 8 to 112MHz
- · 56pin TSSOP Package
- ·Power Down Mode
- ·Rising Edge Strobe Output
- •EU RoHS Compliant

Recommended LVDS Transmitter ICs

- ·THC63LVDM83D
- ·THC63LVDM87

Block Diagram

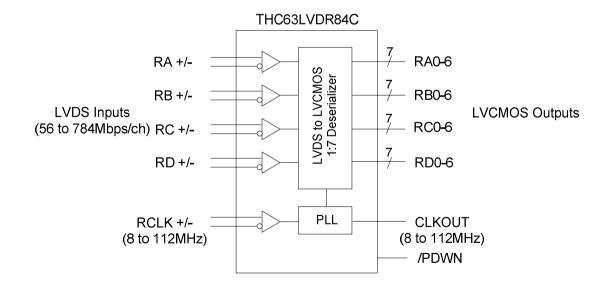


Figure 1. Block Diagram

Pin Diagram

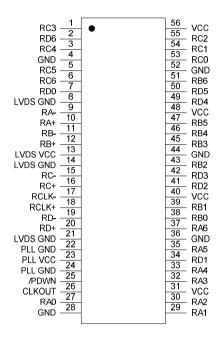


Figure 2. Pin Diagram

Pin Description

Pin Name	Pin #	Direction	Туре	Description
RA+, RA-	10, 9			
RB+, RB-	12, 11			LVDS Data Inputs
RC+, RC-	16, 15			LVD3 Data inputs
RD+, RD-	20, 19			
RCLK+, RCLK-	18, 17	Input	LVDS	LVDS Clock Inputs
RA0 ~ RA6	27, 29, 30, 32, 33, 35, 37			
RB0 ~ RB6	38, 39, 43, 45, 46, 47, 51]		Rivel Data Outpute
RC0 ~ RC6	53, 54, 55, 1, 3, 5, 6	Output		Pixel Data Outputs
RD0 ~ RD6	7, 34, 41, 42, 49, 50, 2		LVCMOS	
CLKOUT	26		LVOIVIOO	Pixel Clock Output
/PDWN	25	Input		H : Normal Operation L : Power Down (All outputs are pulled to ground)
VCC	31, 40, 48, 56			Power Supply Pins for LVCMOS outputs and digital circuitry
GND	4, 28, 36, 44, 52		Power	Ground Pins for LVCMOS outputs and digital circuitry
LVDS VCC	13] -	Power	Power Supply Pins for LVDS inputs
LVDS GND	8, 14, 21			Ground Pins for LVDS inputs
PLL VCC	23			Power Supply Pins for PLL circuitry
PLL GND	22, 24			Ground Pins for PLL circuitry

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Supply Voltage (VCC, LVDS VCC, PLL VCC)	-0.3	+4.0	V
LVCMOS Input Voltage	-0.3	VCC + 0.3	V
LVCMOS Output Voltage	-0.3	VCC + 0.3	V
LVDS Input Pin	-0.3	VCC + 0.3	V
Junction Temperature	-	+125	°C
Storage Temperature	-55	+150	°C
Reflow Peak Temperature	-	+260	°C
Reflow Peak Temperature Time	=	10	sec
Maximum Power Dissipation @+25°C	-	1.9	W

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VCC33	All Supply Voltage(VCC, LVDS VCC, PLL VCC)	3.0	-	3.6	V
Та	Operating Ambient Temperature	-40	+25	+85	°C
PCLK	RCLK and CLKOUT Clock Frequency	8	-	112	MHz

[&]quot;Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics Table4, 5, 6, 7" specify conditions for device operation.

[&]quot;Absolute Maximum Rating" value also includes behavior of overshooting and undershooting.

Equivalent LVDS Input Schematic Diagram

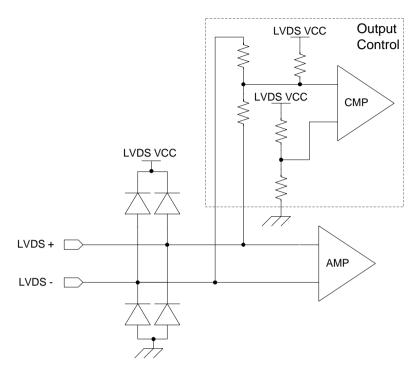


Figure 3. LVDS Input Schematic Diagram

Output Control

/PDWN	RCLK +/- Input	LVCMOS Output
Н	Valid Clock	Active Clock & Data
Н	Invalid Clock	Unfixed Clock & Data
Н	Open or Hi-z	All Low
L	Don't Care	All Low

4

Power Consumption

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Conditions	Typ*	Max	Unit
	LVDS Receiver Operating Current	CL=8pF, PCLK=65MHz, VCC33=3.3V	55	70	mA
IRCCG	Gray Scale Pattern 16 (Fig.4)	CL=8pF, PCLK=112MHz, VCC33=3.3V	90	110	mA
1	LVDS Receiver Operating Current	CL=8pF, PCLK=65MHz, VCC33=3.3V	90	110	mA
IRCCW	Worst Case Pattern(Fig.5)	CL=8pF, PCLK=112MHz, VCC33=3.3V	130	160	mA
IRCCS	LVDS Receiver Power Down Current	/PDWN=L	-	500	μΑ

^{*}Typ values are at the conditions of $Ta = +25^{\circ}C$

16 Grayscale Pattern

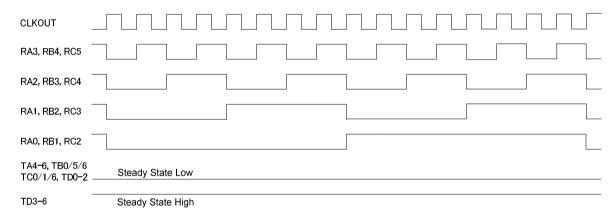


Figure 4. 16 Grayscale Pattern

Worst Case Pattern

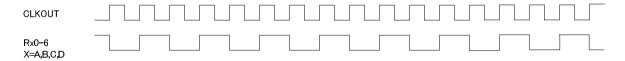


Figure 5. Worst Case Pattern

Electrical Characteristics

LVDS Receiver DC Specifications

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ*	Max	Unit
V _{TH}	Differential Input High Threshold	DI =1000 VIC= 11.2V	-	-	100	mV
V _{TL}	Differential Input Low Threshold	RL=100Ω, VIC=+1.2V	-100	-	-	mV
I _{IN}	Input Current	V _{IN} =+2.4 / 0V LVDS VCC=3.6V	-	-	±30	μА

LVCMOS DC Specifications

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ViH	High Level Input Voltage	-	2.0	-	VCC	V
VIL	Low Level Input Voltage	-	GND	-	0.8	V
V _{OH}	High Level Output Voltage	I _{OH} =-4mA (Data) I _{OH} =-8mA (Clock)	2.4	-	-	٧
VoL	Low Level Output Voltage	I _{OL} =4mA (Data) I _{OL} =8mA (Clock)	-	-	0.4	V
I _{IN}	Input Current	$GND \leq V_{IN} \leq VCC$	-	-	±10	μΑ

LVCMOS Output Load Limitation

The output load is limited so that the junction temperature does not exceed 125°C.

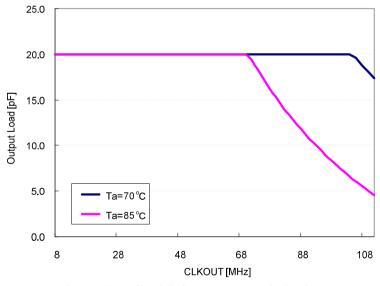


Figure 6. LVCMOS Output Load Limitation

Switching Characteristics

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	see operating supp	Min	Typ*	Max	Unit
t _{RCP}	RCLK and CLKOUT Transition Time		8.92	Т	125	ns
trch	LVCMOS CLKOUT High Time		-	T/2	-	ns
trcl	LVCMOS CLKOUT Low Time		-	T/2	-	ns
t _{RCD}	RCLK IN to CLKOUT Delay		-	(3/14+3) × T	-	ns
t _{RS}	LVCMOS Data Setup to CLKO	JT	0.35×T - 0.3	-	-	ns
t _{RH}	LVCMOS Data Hold from CLKO	DUT	0.45×T - 1.6	-	-	ns
tTLH	LVCMOS Low to High Transition Time		-	0.7	1.0	ns
t _{THL}	LVCMOS High to Low Transitio	n Time	-	0.7	1.0	ns
tour	LVDS Receiver Skew Margin	PCLK=65MHz	-0.55	-	0.55	no
tsĸ		PCLK=112MHz	-0.25	-	0.25	ns
t _{RIP1}	LVDS Input Data Position0		- tsk	0.0	+ tsk	ns
t _{RIP0}	LVDS Input Data Position1		T/7- t _{SK}	T/7	T/7+ t _{SK}	ns
t _{RIP6}	LVDS Input Data Position2		2T/7- t _{SK}	2T/7	2T/7+ t _{SK}	ns
t _{RIP5}	LVDS Input Data Position3		3T/7- t _{SK}	3T/7	3T/7+ t _{SK}	ns
t _{RIP4}	LVDS Input Data Position4		4T/7- tsk	4T/7	4T/7+ tsk	ns
t _{RIP3}	LVDS Input Data Position5		5T/7- t _{SK}	5T/7	5T/7+ t _{SK}	ns
t _{RIP2}	LVDS Input Data Position6		6T/7- t _{SK}	6T/7	6T/7+ t _{SK}	ns
t RPLL	Phase Lock Loop Set		-	-	10.0	ms

^{*}Typ values are at the conditions of VCC33=3.3V and $Ta = +25^{\circ}C$

AC Timing Diagrams

LVDS Input

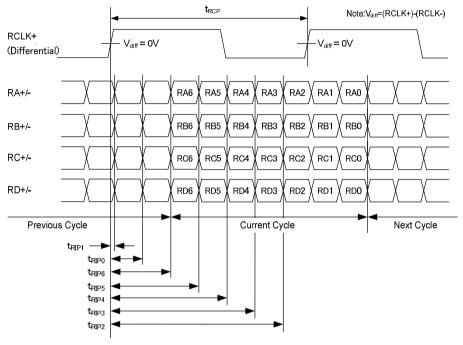


Figure 7. LVDS Input Data Position

LVCMOS Output

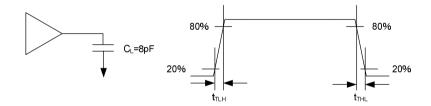


Figure 8. LVCMOS Output Load and Transition Time

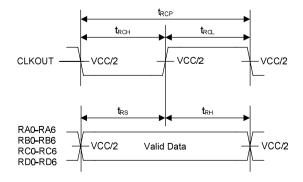


Figure 9. LVCMOS Output Setup and Hold Time

8

Input to Output Delay

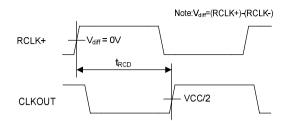


Figure 10.Input Clock to Output Clock Delay Time

Phase Lock Loop Set Time

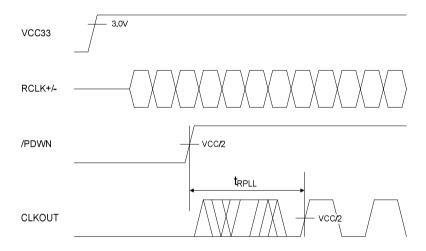


Figure 11. PLL Lock Loop Set Time

Application note

Display Data Mapping Example

Transmitter	VESA format		JEIDA format		Receiver
Pin	6bit(18bpp)	8bit(24bpp)	6bit(18bpp)	8bit(24bpp)	Pin
TA0	R0	R0	R2	R2	RA0
TA1	R1	R1	R3	R3	RA1
TA2	R2	R2	R4	R4	RA2
TA3	R3	R3	R5	R5	RA3
TA4	R4	R4	R6	R6	RA4
TA5	R5	R5	R7	R7	RA5
TA6	G0	G0	G2	G2	RA6
TB0	G1	G1	G3	G3	RB0
TB1	G2	G2	G4	G4	RB1
TB2	G3	G3	G5	G5	RB2
TB3	G4	G4	G6	G6	RB3
TB4	G5	G5	G7	G7	RB4
TB5	B0	B0	B2	B2	RB5
TB6	B1	B1	B3	B3	RB6
TC0	B2	B2	B4	B4	RC0
TC1	B3	B3	B5	B5	RC1
TC2	B4	B4	B6	B6	RC2
TC3	B5	B5	B7	B7	RC3
TC4	Hsync	Hsync	Hsync	Hsync	RC4
TC5	Vsync	Vsync	Vsync	Vsync	RC5
TC6	DE	DE	DE	DE	RC6
TD0	-	R6	-	R0	RD0
TD1	-	R7	-	R1	RD1
TD2	-	G6	-	G0	RD2
TD3	-	G7	-	G1	RD3
TD4	-	B6	-	B0	RD4
TD5	-	B7	-	B1	RD5
TD6	-	N/A	-	N/A	RD6

Note: Use TA to TC channels and open TD channel for 6bit application.

System Connection Example

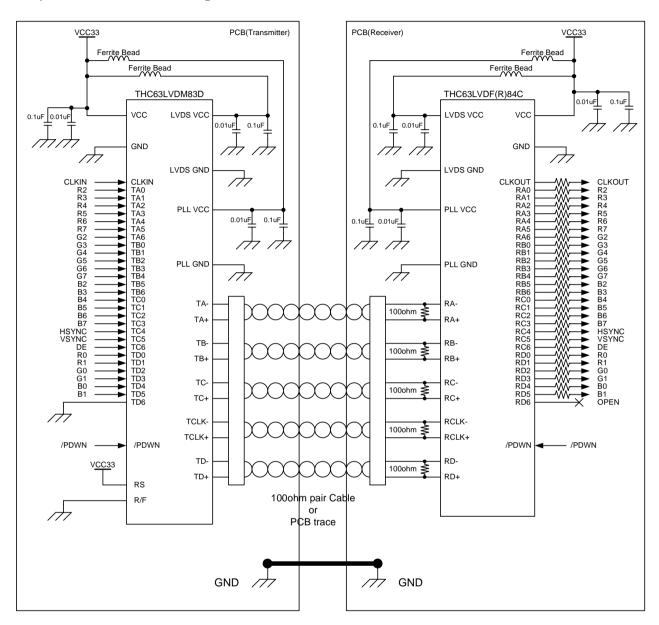


Figure 12. Connection Example with JEIDA Format

Notes

1) Cable Connection and Disconnection

Do not connect and disconnect the LVDS cable, when the power is supplied to the system.

2) GND Connection

Connect each GND of the PCB which LVDS-Tx and THC63LVDR84C on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.

3) Multi Drop Connection

Multi drop connection is not recommended.

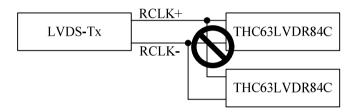


Figure 13. Multi Drop Connection

4) Asynchronous use

Asynchronous using such as following systems is not recommended.

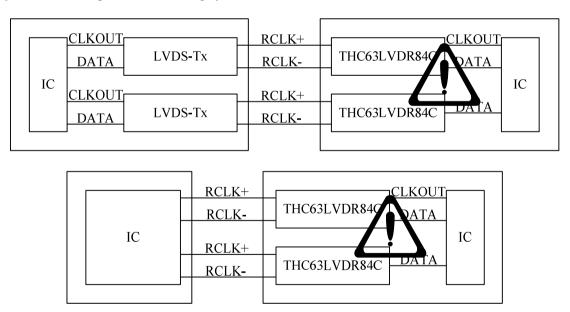
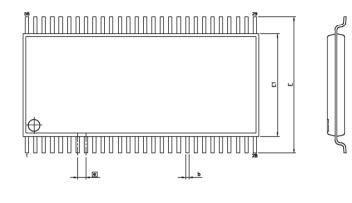
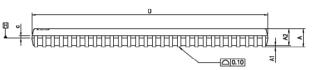




Figure 14. Asynchronous Use

Package

VARIATIONS (ALL DIMENSIONS SHOWN IN MM) SYMBOLS MIN. NON. MAX.

Α	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
ь	0.17	-	0.27
С	0.09	-	0.20
D	13.90	14.00	14.10
E1	6.00	6.10	6.20
Ε		8.10 BSC	
е		0.50 BSC	
L1		1.00 REF	
L	0.45	0.60	0.75
S	0.20	-	-
θ	ď	-	8"

- NOTES:

 1./EDEC OUTLINE: MO-153 EE REV.F

 2.DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR CATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

- 5.DIMENSIONS 'D' AND 'E1' TO BE DETERMINED AT DATUM

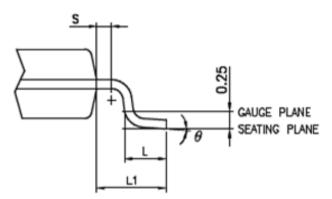
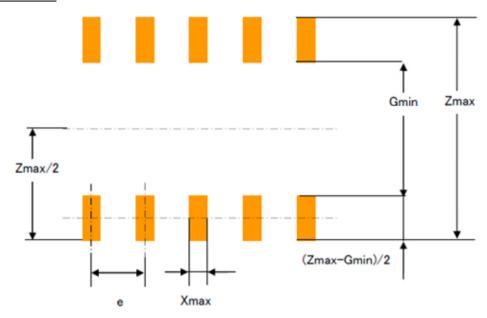



Figure 15. Package Diagram

Reference Land Pattern

Symbol	Calculation method	Units	Calculation Result		
Symbol	Calculation method	Omis	Level1	Level2	Level3
Zmax	Lmax+2JT	mm	9.40	9.00	8.60
Gmin	Smin -2JH	mm	5.40	5.70	6.00
Xmax	Wmax +2JS	mm	0.47	0.370	0.27
-	(Zamx-Gmin)/2	mm	2.00	1.65	1.30

^{*} We calculate the value based on Reflow Soldering Method.

(Printed Manufacturing Tolerance and Mounted Tolerance = 0mm)

Figure 16. Reference of Land Pattern

The recommendation mounting method of THine device is reflow soldering.

The reference pattern is using the calculation result on condition of reflow soldering.

Notes

This land pattern design is a calculated value based on JEITA ET-7501.

Please take into consideration in an actual substrate design about enough the ease of mounting, the intensity of connection, the density of mounting, and the solder paste used, etc... The optimal land pattern size changes with these parameters. Please use the value shown by the land pattern as reference data.

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.
- 3. This material contains THine's copyright, know-how or other intellectual property rights. Copying, reverse-engineer or disclosing to third parties the contents of this material without THine's prior written permission is prohibited.
- 4. THINE ACCEPTS NO LIABILITY FOR ANY DAMAGE OR LOSS IN CONNECTION WITH ANY DISPUTE RELATING TO INTELLECTUAL PROPERTY RIGHTS BETWEEN THE USER AND ANY THIRD PARTY, ARISING OUT OF THIS PRODUCT, EXCEPT FOR SUCH DAMAGE OR LOSS IN CONNECTION WITH DISPUTES SUCCESSFULLY PROVED BY THE USER THAT SUCH DISPUTES ARE DUE SOLELY TO THINE. NOTE, HOWEVER, EVEN IN THE AFOREMENTIONED CASE, THINE ACCEPTS NO LIABILITY FOR SUCH DAMAGE OR LOSS IF THE DISPUTE IS CAUSED BY THE USER'S INSTRUCTION.
- 5. This product is not designed for applications that require extremely high-reliability/safety such as aerospace device, nuclear power control device, or medical device related to critical care, excluding when this product is specified for automotive use by THine and used it for that purpose. THine accepts no liability whatsoever for any damages, claims or losses arising out of the uses set forth above.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently fail-safe design principles such as redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. This product may be permanently damaged and suffer from performance degradation or loss of mechanical functionality if subjected to electrostatic charge exceeding capacity of the ESD (Electrostatic Discharge) protection circuitry. Safety earth ground must be provided to anything in contact with the product, including any operator, floor, tester and soldering iron.
- 8. Please note that this product is not designed to be radiation-proof.
- 9. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 10. This product must be stored according to storage method which is specified in this specifications. Thine accepts no liability whatsoever for any damage or loss caused to the user due to any storage not according to above-mentioned method.
- 11. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act in Japan and the Export Administration Regulations in the United States of America on export or transit of this product. This product is prohibited for the purpose of developing military modernization, including the development of weapons of mass destruction (WMD), and the purpose of violating human rights.
- 12. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses. Thine accepts no liability whatsoever for any damage or loss caused to the user due to use under a condition exceeding the limiting values.
- 13. All patents or pending patent applications, trademarks, copyrights, layout-design exploitation rights or other intellectual property rights concerned with this product belong to Thine or licensor(s) of Thine. No license or right is granted to the user for any intellectual property right or other proprietary right now or in the future owned by Thine or Thine's licensor. The user must enter into a license agreement with Thine or Thine's licensor to be granted of such license or right.

THine Electronics, Inc.

https://www.thine.co.jp