

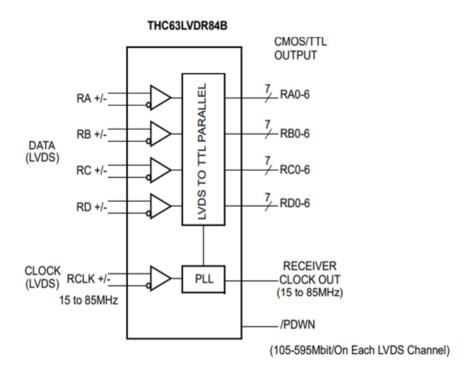
THC63LVDR84B

24bit COLOR LVDS RECEIVER (Rising Edge Clock)

General Description

The THC63LVDR84B receiver supports wide VCC range as 2.5 to 3.6V. At single 2.5V supply, the THC63LVDR84B reduces EMI and power consumption.

The THC63LVDR84B converts the four LVDS data streams back into 24bits of CMOS/TTL data with Rising edge clock. At a transmit clock frequency of 85MHz, 24bits of RGB data and 4bits of timing and control data (HSYNC, VSYNC, DE, CNTL1, CNTL2) are transmitted at an effective rate of 2.38Gbps.


Application

- · Medium and Small Size Panel
- ·Tablet PC / Notebook PC
- · Security Camera / Industrial Camera
- · Multi Function Printer
- ·Industrial Equipment
- · Medical Equipment Monitor

Features

- ·1:7 LVDS to CMOS/TTL De-Serializer
- •Operating Temperature Range: -10 to +70°C
- · Spread Spectrum Clocking Tolerant up to 100kHz Frequency Modulation and +/-2.5% Deviations.
- ·Input Clock Range: 15 to 85MHz
- · 56pin TSSOP Package
- · Power Down Mode.
- ·Rising Edge Clock
- •EU RoHS Compliant.

Block Diagram

THine Electronics, Inc. . Copyright@2023 THine Electronics, Inc.

1/13

Pin Diagram

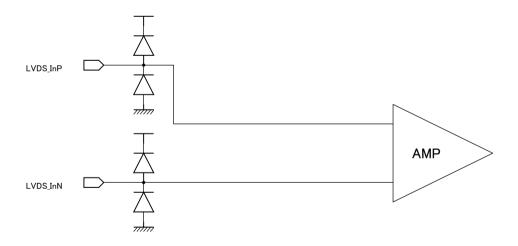
THC63LVDR84B					
RC3 1 2 RD6 3 RC4 3 GND 4 RC5 5 RC6 6 RD0 7 RC5 RC6 11 RB+ 11 RB+ 11 RB+ 12 LVDS/GND RC+ 15 RCK+ 15 RCK+ 16 RCK+ 16 RCK+ 16 RCK+ 16 RCK+ 16 RCK+ 16 RCK+ 17 RCKK+ 18 RD- 21 PLL/GND 21 PLL/GND 22 PLL/GND 22 PLL/GND 22 RCA0 RCA0 GND RCA0 RCA0 RCA0 RCA0 RCAC RCAC RCAC RCAC		56 VCC 55 RC2 54 RC1 53 RC0 55 RDD 51 RB6 50 RD5 49 RD4 48 VCC 47 RB5 46 RB4 45 RB3 44 GND 43 RB2 42 RD3 41 RD2 40 VCC 39 RB1 33 RA6 35 RA5 36 GND 35 RA5 37 RA6 36 GND 37 RA6 38 RB0 37 RA6 37 RA6 38 RB0 37 RA6 37 RA6 38 RB0 37 RA6 38 RB0 37 RA6 38 RA5 37 RA6 39 RB1 31 RD2 30 RA5 31 VCC 39 RA1			

Pin Description

Pin Name	Pin #	Direction	Type	Description
RA+, RA-	10, 9			
RB+, RB-	12, 11			4ch Serial Data Inputs
RC+, RC-	16, 15	Input	LVDS	401 Seriai Data Iriputs
RD+, RD-	20, 19	input	LVDS	
RCLK+,	18, 17			Clock Inputs
RCLK-				Glock inputs
RA0 ~ RA6	27, 29, 30, 32, 33, 35, 37			
RB0 ~ RB6	38, 39, 43, 45, 46, 47, 51			28bits Parallel Data Outputs
RC0 ~ RC6	53, 54, 55, 1, 3, 5, 6	Output		20013 Farallel Data Outputs
RD0 ~ RD6	7, 34, 41, 42, 49, 50, 2		CMOS/TTL	
CLKOUT	26		CIVICO/TTL	Clock Output
				H : Normal Operation
/PDWN	25	Input		L : Power Down (all outputs are pulled to
\/CC	24 40 40 50			ground)
VCC	31, 40, 48, 56			Digital circuit and CMOS/TTL I/O Power
GND	4 20 26 44 52			Supply Digital circuit and CMOS/TTL I/O
GND	4, 28, 36, 44, 52			Digital circuit and CMOS/TTL I/O Ground
LVDSVCC	13	5		LVDS circuit and input buffer Power
LVDSVCC	13	Power	-	Supply
LVDSGND	8, 14, 21			LVDS circuit and input buffer Ground
PLLVCC	23			PLL circuit Power Supply
PLLGND	22, 24			PLL circuit Ground

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Supply Voltage (VCC)	-0.3	+4.0	V
CMOS/TTL Input Voltage	-0.3	VCC + 0.3	V
CMOS/TTL Output Voltage	-0.3	VCC + 0.3	V
LVDS Input Pin	-0.3	VCC + 0.3	V
Junction Temperature	-	+125	°C
Storage Temperature	-55	+150	°C
Reflow Peak Temperature	-	+260	°C
Reflow Peak Temperature Time	-	10	sec
Maximum Power Dissipation @+25°C	-	1.9	W


Recommended Operating Conditions

VCC=LVDSVCC=PLLVCC

Symbol	Parameter		Min	Тур	Max	Unit
-	All Supply Voltage		2.5	-	3.6	V
Ta	Operating Ambient Temperature		-10	+25	+70	°C
	VCC = 2.5V to 2.7V		20	-	70	MHz
-	Clock Frequency VCC = 2.7V to 3.0V		15	-	70	MHz
	·	VCC = 3.0V to 3.6V	15	-	85	MHz

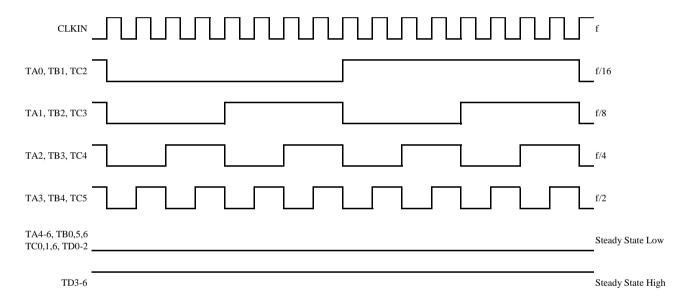
[&]quot;Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Equivalent LVDS Input Schematic Diagram

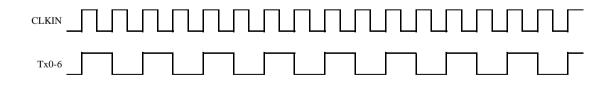
LVDS Input Schematic Diagram

THine Electronics, Inc. . Copyright©2023 THine Electronics, Inc. SC: E 3/13

[&]quot;Absolute Maximum Rating" value also includes behavior of overshooting and undershooting.



Power Consumption


VCC=LVDSVCC=PLLVCC

Symbol	Parameter	Conditions	Typ*	Max	Unit
		RL=100Ω, C _{Load} =8pF, f=65MHz, VCC=3.3V	41	53	mA
I _{RCCG}	I _{RCCG} LVDS Receiver Operating Current 16 Gray Scale Pattern	RL=100Ω, C _{Load} =8pF, f=85MHz, VCC=3.3V	52	64	mA
		RL=100Ω, C _{Load} =8pF, f=65MHz, VCC=2.5V	30	42	mA
	LVDS Receiver	RL=100Ω, C _{Load} =8pF, f=65MHz, VCC=3.3V	72	94	mA
I _{RCCW}	Operating Current	RL=100 Ω , C _{Load} =8pF, f=85MHz, VCC=3.3V	84	96	mA
	Worst Case Pattern	RL=100Ω, C _{Load} =8pF, f=65MHz, VCC=2.5V	42	64	mA
I _{RCCS}	LVDS Receiver Power Down Current	/PDWN=L	-	10	μA

^{*}Typ values are at the conditions of $Ta = +25^{\circ}C$

16 Grayscale Pattern

Worst Case Pattern

x=A,B,C,D

Electrical Characteristics

CMOS/TTL DC Specifications

VCC=LVDSVCC=PLLVCC

Symbol	Parameter	Conditions	Min	Typ*	Max	Unit
ViH	High Level Input Voltage	-	2.0	-	VCC	V
VIL	Low Level Input Voltage	-	GND	-	0.8	V
V _{OH1}	High Level Output Voltage	VCC = 3.0V to 3.6V I _{OH} = -4mA	2.4	-	-	V
V _{OL1}	Low Level Output Voltage	VCC = 3.0V to 3.6V I _{OL} = 4mA	-	-	0.4	V
V _{OH2}	High Level Output Voltage	VCC = 2.5V to 3.0V $I_{OH} = -2mA$	2.1	-	-	V
V _{OL2}	Low Level Output Voltage	VCC = 2.5V to 3.0V $I_{OL} = 2\text{mA}$	-	-	0.4	V
lin	Input Current	$GND \leq V_{IN} \leq VCC$	-	-	±10	μА

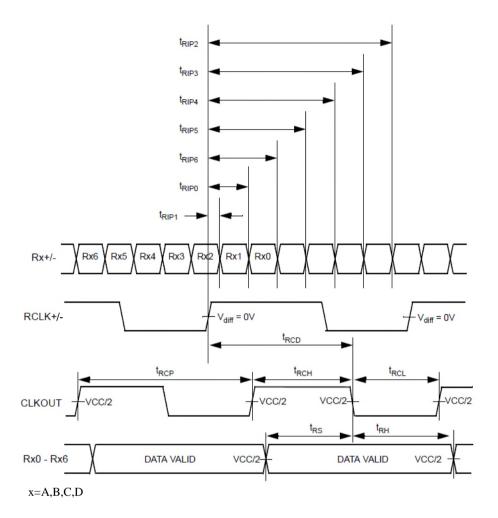
LVDS DC Specifications

VCC=LVDSVCC=PLLVCC

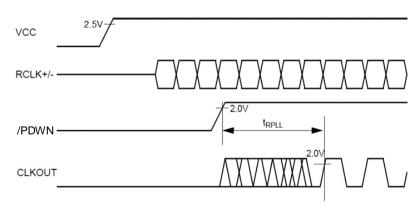
Symbol	Parameter	Conditions	Min	Typ*	Max	Unit
V_{TH}	Differential Input High Threshold	RL=100Ω,	-	-	100	mV
V_{TL}	Differential Input Low Threshold	VIC=+1.2V	-100	-	-	mV
l _{IN}	Input Current	V _{IN} = +2.4 / 0V VCC = 3.6V	-	-	±10	μА

CMOS/TTL & LVDS AC Specifications

VCC=LVDSVCC=PLLVCC

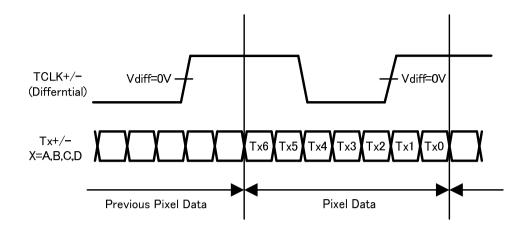

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	CLKOUT	VCC = 2.5V to 2.7V	14.3	Т	50.0	
tRCP	Transition Time	VCC = 2.7V to 3.0V	14.3	T	66.6	ns
		VCC = 3.0V to 3.6V	11.8	T	66.6	
trch	CLKOUT High Time		-	4T/7	-	ns
trcl	CLKOUT Low Time		-	3T/7	-	ns
t _{RCD}	RCLK IN to CLKOUT +/- Delay		-	5T/7	-	ns
t _{RS}	CMOS/TTL Data Setup to CLKOUT		0.35T - 0.3	-	-	ns
t _{RH}	CMOS/TTL Data Hold from CLKOUT		0.45T – 1.6	-	-	ns
tтьн	CMOS/TTL Low to High Transition Time	C _{Load} =8pF, 20-80%	-	2.0	3.0	ns
t _{THL}	CMOS/TTL High to Low Transition Time	C _{Load} =8pF, 80-20%	-	1.8	3.0	ns
t _{RIP1}	LVDS Input Data Position0	T=11.76ns	-0.4	0.0	+0.4	ns
t _{RIP0}	LVDS Input Data Position1	T=11.76ns	T/7-0.4	T/7	T/7+0.4	ns
t _{RIP6}	LVDS Input Data Position2	T=11.76ns	2T/7-0.4	2T/7	2T/7+0.4	ns
t _{RIP5}	LVDS Input Data Position3	T=11.76ns	3T/7-0.4	3T/7	3T/7+0.4	ns
t _{RIP4}	LVDS Input Data Position4	T=11.76ns	4T/7-0.4	4T/7	4T/7+0.4	ns
t _{RIP3}	LVDS Input Data Position5	T=11.76ns	5T/7-0.4	5T/7	5T/7+0.4	ns
t _{RIP2}	LVDS Input Data Position6	T=11.76ns	6T/7-0.4	6T/7	6T/7+0.4	ns
trpll	Phase Lock Loop Set	T=11.76ns	-	-	10.0	ms

^{*}Typ values are at the conditions of VCC/LVDSVCC/PLLVCC=3.3V and Ta = +25°C


SC: E

AC Timing Diagram

Data and Clock Input to Output AC Timing Diagram



Power on Sequence

THine Electronics, Inc.

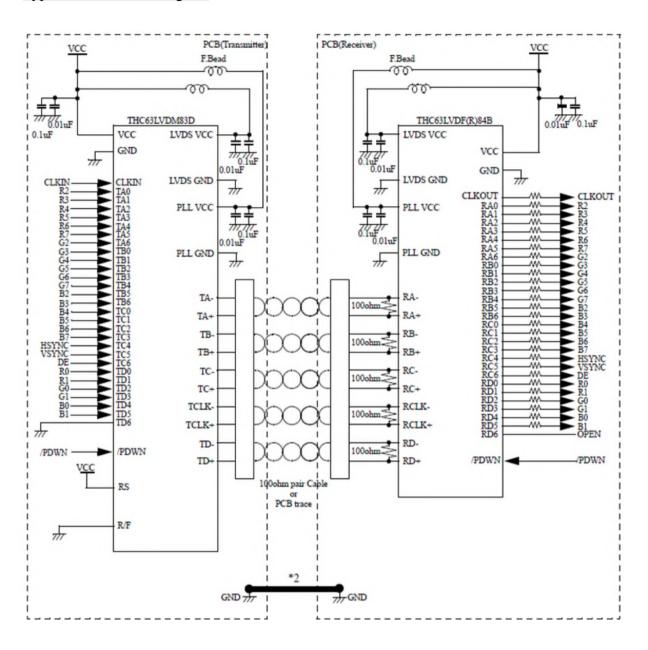
LVDS Data Mapping

LVDS Data Mapping

Pixel Data Mapping for JEIDA Format (6bit, 8bit Application)

TX Pin	6bit	8bit	RX Pin
TA0	R2	R2	RA0
TA1	R3	R3	RA1
TA2	R4	R4	RA2
TA3	R5	R5	RA3
TA4	R6	R6	RA4
TA5	R7	R7	RA5
TA6	G2	G2	RA6
TB0	G3	G3	RB0
TB1	G4	G4	RB1
TB2	G5	G5	RB2
TB3	G6	G6	RB3
TB4	G7	G7	RB4
TB5	B2	B2	RB5
TB6	B3	B3	RB6
TC0	B4	B4	RC0
TC1	B5	B5	RC1
TC2	B6	B6	RC2
TC3	B7	B7	RC3
TC4	Hsync	Hsync	RC4
TC5	Vsync	Vsync	RC5
TC6	DE	DE	RC6
TD0	-	R0	RD0
TD1	-	R1	RD1
TD2	-	G0	RD2
TD3	-	G1	RD3
TD4	-	B0	RD4
TD5	-	B1	RD5
TD6	-	N/A	RD6

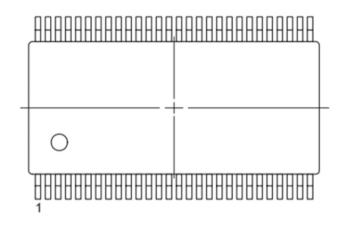
THine Electronics, Inc.

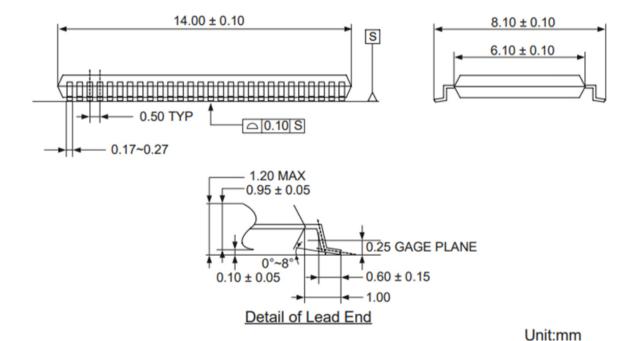


Pixel Data Mapping for VESA Format (6bit, 8bit Application)

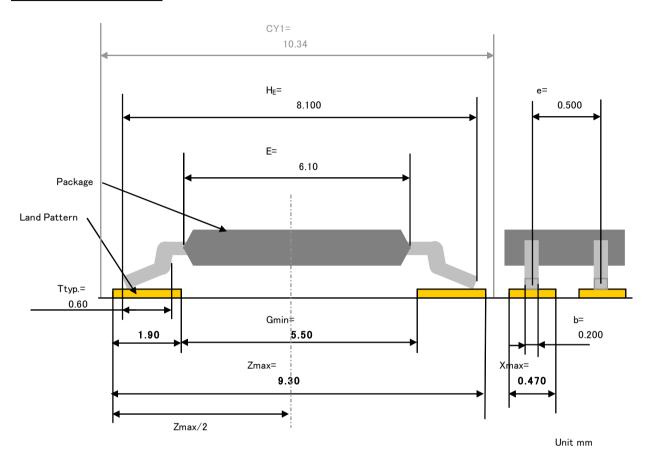
TX Pin	6bit	8bit	RX Pin
TA0	R0	R0	RA0
TA1	R1	R1	RA1
TA2	R2	R2	RA2
TA3	R3	R3	RA3
TA4	R4	R4	RA4
TA5	R5	R5	RA5
TA6	G0	G0	RA6
TB0	G1	G1	RB0
TB1	G2	G2	RB1
TB2	G3	G3	RB2
TB3	G4	G4	RB3
TB4	G5	G5	RB4
TB5	B0	B0	RB5
TB6	B1	B1	RB6
TC0	B2	B2	RC0
TC1	B3	B3	RC1
TC2	B4	B4	RC2
TC3	B5	B5	RC3
TC4	Hsync	Hsync	RC4
TC5	Vsync	Vsync	RC5
TC6	DE	DE	RC6
TD0	-	R6	RD0
TD1	-	R7	RD1
TD2	-	G6	RD2
TD3	-	G7	RD3
TD4	-	B6	RD4
TD5	-	B7	RD5
TD6	-	N/A	RD6

Typical Connection Diagram




Typical Connection Diagram with JEIDA Format

THine Electronics, Inc.


Package

Reference Land Pattern

The recommendation mounting method of THine device is reflow soldering. The reference pattern is using the calculation result on condition of reflow soldering.

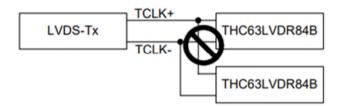
Notes

This land pattern design is a calculated value based on JEITA ET-7501.

Please take into consideration in an actual substrate design about enough the ease of mounting, the intensity of connection, the density of mounting, and the solder paste used, etc... The optimal land pattern size changes with these parameters. Please use the value shown by the land pattern as reference data.

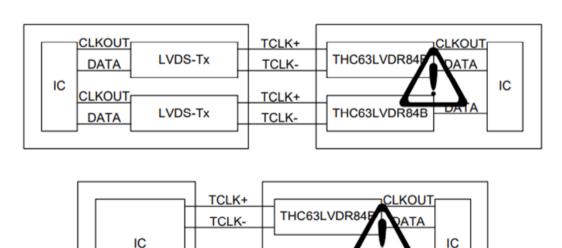
Notes

1) Cable Connection and Disconnection


Do not connect and disconnect the LVDS cable, when the power is supplied to the system.

2) GND Connection

Connect each GND of the PCB which LVDS Tx device and THC63LVDR84B on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.


3) Multi Drop Connection

Multi drop connection is not recommended.

4) Asynchronous use

Asynchronous using such as following systems is not recommended.

THC63LVDR84B

TCLK+

TCLK-

THine Electronics, Inc.

12/13

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.
- 3. This material contains THine's copyright, know-how or other intellectual property rights. Copying, reverse-engineer or disclosing to third parties the contents of this material without THine's prior written permission is prohibited.
- 4. THINE ACCEPTS NO LIABILITY FOR ANY DAMAGE OR LOSS IN CONNECTION WITH ANY DISPUTE RELATING TO INTELLECTUAL PROPERTY RIGHTS BETWEEN THE USER AND ANY THIRD PARTY, ARISING OUT OF THIS PRODUCT, EXCEPT FOR SUCH DAMAGE OR LOSS IN CONNECTION WITH DISPUTES SUCCESSFULLY PROVED BY THE USER THAT SUCH DISPUTES ARE DUE SOLELY TO THINE. NOTE, HOWEVER, EVEN IN THE AFOREMENTIONED CASE, THINE ACCEPTS NO LIABILITY FOR SUCH DAMAGE OR LOSS IF THE DISPUTE IS CAUSED BY THE USER'S INSTRUCTION.
- 5. This product is not designed for applications that require extremely high-reliability/safety such as aerospace device, nuclear power control device, or medical device related to critical care, excluding when this product is specified for automotive use by THine and used it for that purpose. THine accepts no liability whatsoever for any damages, claims or losses arising out of the uses set forth above.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently fail-safe design principles such as redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. This product may be permanently damaged and suffer from performance degradation or loss of mechanical functionality if subjected to electrostatic charge exceeding capacity of the ESD (Electrostatic Discharge) protection circuitry. Safety earth ground must be provided to anything in contact with the product, including any operator, floor, tester and soldering iron.
- 8. Please note that this product is not designed to be radiation-proof.
- 9. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 10. This product must be stored according to storage method which is specified in this specifications. Thine accepts no liability whatsoever for any damage or loss caused to the user due to any storage not according to above-mentioned method.
- 11. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act in Japan and the Export Administration Regulations in the United States of America on export or transit of this product. This product is prohibited for the purpose of developing military modernization, including the development of weapons of mass destruction (WMD), and the purpose of violating human rights.
- 12. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses. Thine accepts no liability whatsoever for any damage or loss caused to the user due to use under a condition exceeding the limiting values.
- 13. All patents or pending patent applications, trademarks, copyrights, layout-design exploitation rights or other intellectual property rights concerned with this product belong to Thine or licensor(s) of Thine. No license or right is granted to the user for any intellectual property right or other proprietary right now or in the future owned by Thine or Thine's licensor. The user must enter into a license agreement with Thine or Thine's licensor to be granted of such license or right.

THine Electronics, Inc.

https://www.thine.co.jp

THine Electronics, Inc. SC: E