

THCV2712

V-by-One® HS Distributor

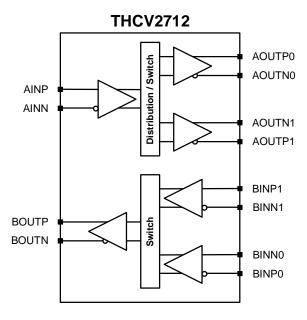
General Description

The THCV2712 is a high performance 1:2 signal distributor for V-by-One® HS with data rates up to 4Gbps and integrated 2:1 and 1:2 signal switcher support bi-directional communication.

The THCV2712 features the distribution function which duplicates a V-by-One[®] HS signal and the switch function which changes the path of signals. All configurations are supported by external pins.

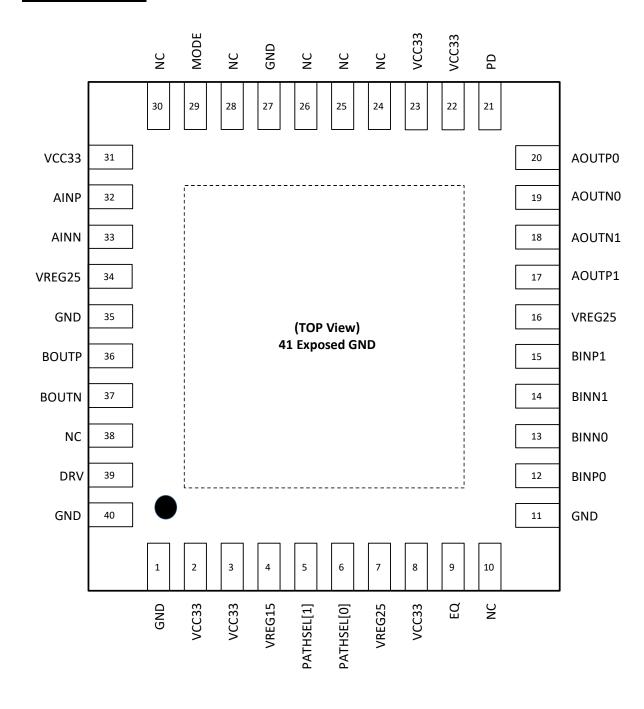
All driver outputs and receiver inputs are internally terminated which no require external components.

Features


- Unidirectional Distribution
- Bi-directional Switch (1:2 and 2:1)
- Transmit VOD Control: 600 to 1300 mVp-p
- Available in single supply voltage 3.3V with integrated LDO
- ESD: HBM ±4kV
- QFN40 (5.0mm x 5.0mm)

Applications

All V-by-One® HS applications such as


- Digital Signage
- Digital Blackboard
- Multi-Function Printer
- Production Printer
- Medical Imaging
- Machine Vision
- Image Sensor
- Camera

Block Diagram

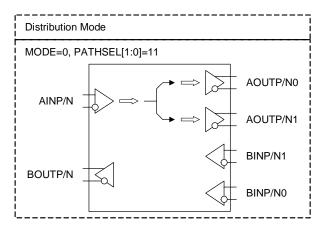
Pin Configuration

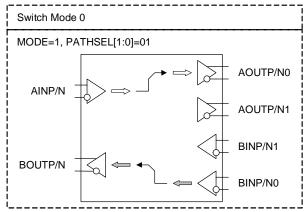
Pin Description

i ili Description			
Pin Name	Pin No	Туре	Description
AINP	32	CI	High-Speed CML Channel A (CHA) Signal Input
AINN	33	CI	High-Speed CML Channel A (CHA) Signal Input
BOUTP	36	CO	High-Speed CML Channel B (CHB) Signal Output
BOUTN	37	СО	High-Speed CML Channel B (CHB) Signal Output
AOUTP1	17	CO	High-Speed CML Port 1 of CHA Signal Output
AOUTN1	18	CO	High-Speed CML Port 1 of CHA Signal Output
AOUTP0	20	CO	High-Speed CML Port 0 of CHA Signal Output
AOUTN0	19	CO	High-Speed CML Port 0 of CHA Signal Output
BINP1	15	CI	High-Speed CML Port 1 of CHB Signal Input
BINN1	14	CI	High-Speed CML Port 1 of CHB Signal Input
BINP0	12	CI	High-Speed CML Port 0 of CHB Signal Input
BINN0	13	CI	High-Speed CML Port 0 of CHB Signal Input
PD	21	I	Power Down 0: Operation 1: Chip Power Down
MODE	29	I	Mode select 0 : Distribution 1 : Switch
PATHSEL[1:0]	5,6	1	Select Switch Input / Output
EQ	9	3LI	Rx equalizer setting.
DRV	39	3LI	Tx output swing control
VREG15	4	PWR	Decoupling Capacitor Pin for On-chip Regulator.
VREG25	7,16,34	PWR	Decoupling Capacitor Pin, 2.5V output.
VCC33	2,3,8,22, 23,31	PWR	Power supply pin for on-chip regulator.
GND	1,11,27, 35,40,41	GND	Ground. Must be tied to the PCB ground plane through an array of vias. Pin#41 is exposed pad ground.
NC	10,24,25, 26,28,30, 38	NC	Non-connection pin. Must be open.

CI: CML Input buffer, CO: CML Output buffer

I: LVCMOS Input buffer, 3LI: 3-Level LVCMOS Input buffer, PWR: Power supply, GND: Ground, NC: Non-connection pin




Operation Mode Settings

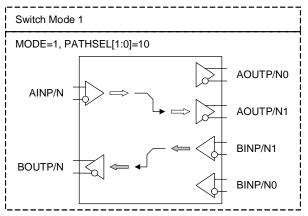

Table1 shows the operation mode setting.

Table 1. Operation Mode Setting

	Pin Settings		Operation Mode
PD	MODE	PATHSEL[1:0]	Operation Mode
	0	11	Distribution Mode
0	4	01	Switch Mode Port 0 Enable
	'	10	Switch Mode Port 1 Enable
1	Ignore	Ignore	Chip Power Down.

LOCKN/HTPDN signals are not be distributed and switched. The signals should be bypassed THCV2712.

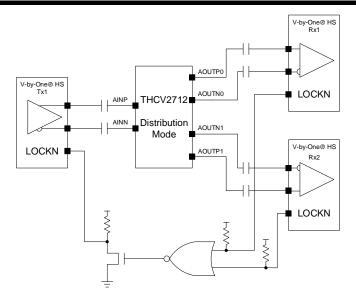


Figure 1. LOCKN circuits in Distribution Mode

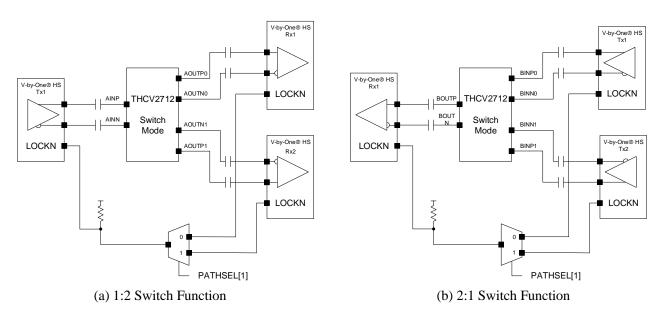


Figure 2. LOCKN circuits in Switch Mode

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Par	ameter	Min	Тур	Max	Unit
Supply Vo	Supply Voltage(VCC33)			4.0	V
	Input Voltage	-0.3	-	VCC33+0.3	V
	CMOS Input Voltage	-0.3	-	VCC33+2.5	V
	3-Level LVCMOS Input Voltage			VCC33+0.3	V
	CML Receiver Input Voltage			3.0	V
CML Transmitt	er Output Voltage	-0.3	-	3.0	V
ESD Rating	HBM	-	-	±4	kV
E3D Rating	CDM	-	-	±500	V
Storage ⁻	Storage Temperature			125	Ô
Junction ¹	-	-	125	Ô	
Reflow Peak 1	emperature/Time	-	-	260/10	°C/sec

Recommended Operating Conditions

Table 3. Recommended Operating Condition

Parameter	Min	Тур	Max	Unit
Supply Voltage(VCC33)	3.0	3.3	3.6	V
Supply Ramp Requirement	0.1	-	50	ms
Operating Temperature	-40	-	85	°C

Electrical Specification

LVCMOS DC Specification

Table 4. LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIH	High Level Input Voltage	-	2.0	-	VCC33	V
VIL	Low Level Input Voltage	-	0	-	0.7	V
VOH	High Level Output Voltage	I _{oh} =-2mA	2.4	-	VCC33	V
VOL	Low Level Output Voltage	I _{ol} =8mA	0	-	0.4	V
IOZH	Output Leak Current High in Hi-Z State	-	-15	-	15	uA
IOZL	Output Leak Current Low in Hi-Z State	-	-15	-	15	uA

3-Level LVCMOS DC Specification

Table 5. 3-Level LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{THL}	Low-Level Threshold Voltage	*	0.42	0.83	1.25	V
Vтнн	High-Level Threshold Voltage	*	1.25	1.67	2.08	V
I _{IH_3L}	High Level Input Leak Current	VIN=VCC33	-100	-	100	uA
I _{IL_3L}	Low Level Input Leak Current	VIN=GND	-100	-	100	uA

^{*}Must be tied for setting each level

Low: Tie 1k Ω $\pm 5\%$ to GND

Float: Leave pin open

High: Tie 1k Ω ±5% to VCC33

Supply Current

Table 6. Supply Current

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		PD=0,MODE=1 EQ=High DRV=High	-	-	170	mA
ICCW	Active Mode Supply Current	PD=0,MODE=1 EQ=Low DRV=Low	-	90	-	mA
		PD=0,MODE=0	-	-	250	mA
ICCS	Power Down Supply Current	PD=1	-	1.0	2.0	mA

Receiver DC/AC Specification

Table 7. Receiver DC/AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{RX-TH}	CML Differential Input High				50	mV
V RX-1H	Threshold		_	-	30	IIIV
V_{RX-TL}	CML Differential Input Low		-50	_	_	mV
V RX-IL	Threshold		-30	_	_	IIIV
V_{RX-RIN}	CML Differential Input Resistance		80	100	120	Ω
V _{RX-EQ-LOW}	Input Equalization@2GHz	EQ=Low	-	3.2	-	dB
V _{RX-EQ-FLOAT}	Input Equalization@2GHz	EQ=Float	-	4.6	-	dB
V _{RX-EQ-HIGH}	Input Equalization@2GHz	EQ=High	-	7.6	-	dB

Transmitter DC / AC specifications

Table 8. Transmitter DC / AC specification

Over recommended operating supply and temperature range unless otherwise specified

Currente a l	Devementer	Condition	Min	Time	Max	l lm!4
Symbol	Parameter	Condition	Min	Тур	Max	Unit
VTX-DIFF-PP-LOW	Differential p-p Tx Voltage Swing	DRV=Low	0.4	0.6	0.8	
V _{TX-DIFF-PP-FLOQT}	Differential p-p Tx Voltage Swing	DRV=Float	0.8	1.0	1.2	V
VTX-DIFF-PP-HIGH	Differential p-p Tx Voltage Swing	DRV=High	1.0	1.3	1.6	
R _{TX-DIFF-DC}	DC Differential Impedance	-	80	100	120	Ω
Vтх-dc-см	Transmitter DC Common-mode Voltage	-	-	1.9	-	٧
ITX-SHORT	Transmitter Short-circuit Current Limit	-	-	20	60	mA
TACTIVE	PD Low to CML Output Delay				200	ns
TPOWERDOWN	PD High to CML Output High Fix Delay				10	ns
T _{SKEW}	CML Output Inter-pair skew				25	ps
T _{PROPAGATION}	Differential Propagation Delay	-	-	150	-	ps
ΔT PROPAGATION	Delta Propagation Delay		-	-	90	ps
T _{SWITCH}	Switching Time	-	-	-	10	ns

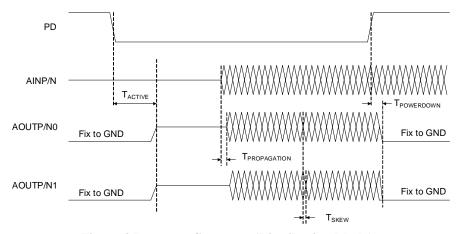


Figure 3 Power on Sequence (Distribution Mode)

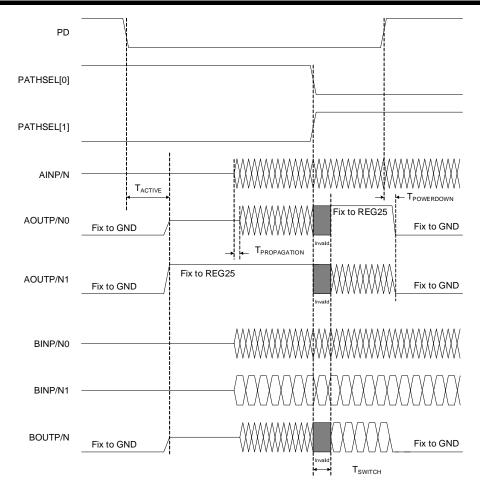
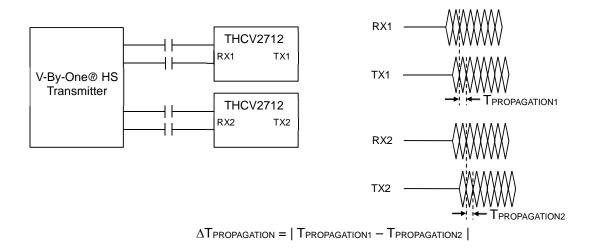
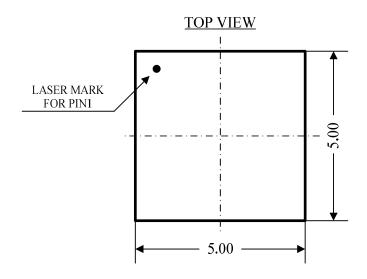
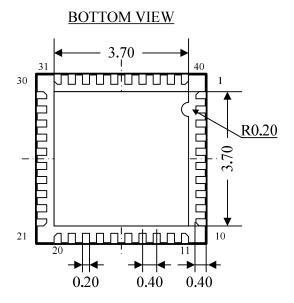
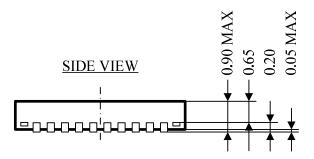


Figure 4. Power on Sequence (Switch Mode)


Figure 5. CML Propagation Delay Timing


9/11

Package

Unit: mm

Figure 6. 40-pin QFN package physical dimension

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. Thine Electronics, Inc. ("Thine") is not responsible for possible errors and omissions in this material. Please note even if errors or omissions should be found in this material, Thine may not be able to correct them immediately.
- 3. This material contains THine's copyright, know-how or other intellectual property rights. Copying, reverse-engineer or disclosing to third parties the contents of this material without THine's prior written permission is prohibited.
- 4. THINE ACCEPTS NO LIABILITY FOR ANY DAMAGE OR LOSS IN CONNECTION WITH ANY DISPUTE RELATING TO INTELLECTUAL PROPERTY RIGHTS BETWEEN THE USER AND ANY THIRD PARTY, ARISING OUT OF THIS PRODUCT, EXCEPT FOR SUCH DAMAGE OR LOSS IN CONNECTION WITH DISPUTES SUCCESSFULLY PROVED BY THE USER THAT SUCH DISPUTES ARE DUE SOLELY TO THINE. NOTE, HOWEVER, EVEN IN THE AFOREMENTIONED CASE, THINE ACCEPTS NO LIABILITY FOR SUCH DAMAGE OR LOSS IF THE DISPUTE IS CAUSED BY THE USER'S INSTRUCTION.
- 5. This product is not designed for applications that require extremely high-reliability/safety such as aerospace device, nuclear power control device, or medical device related to critical care, excluding when this product is specified for automotive use by THine and used it for that purpose. THine accepts no liability whatsoever for any damages, claims or losses arising out of the uses set forth above.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently fail-safe design principles such as redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. This product may be permanently damaged and suffer from performance degradation or loss of mechanical functionality if subjected to electrostatic charge exceeding capacity of the ESD (Electrostatic Discharge) protection circuitry. Safety earth ground must be provided to anything in contact with the product, including any operator, floor, tester and soldering iron.
- 8. Please note that this product is not designed to be radiation-proof.
- 9. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 10. This product must be stored according to storage method which is specified in this specifications. Thine accepts no liability whatsoever for any damage or loss caused to the user due to any storage not according to above-mentioned method.
- 11. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act in Japan and the Export Administration Regulations in the United States of America on export or transit of this product. This product is prohibited for the purpose of developing military modernization, including the development of weapons of mass destruction (WMD), and the purpose of violating human rights.
- 12. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses. Thin accepts no liability whatsoever for any damage or loss caused to the user due to use under a condition exceeding the limiting values.
- 13. All patents or pending patent applications, trademarks, copyrights, layout-design exploitation rights or other intellectual property rights concerned with this product belong to THine or licensor(s) of THine. No license or right is granted to the user for any intellectual property right or other proprietary right now or in the future owned by THine or THine's licensor. The user must enter into a license agreement with THine or THine's licensor to be granted of such license or right.

THine Electronics, Inc.

https://www.thine.co.jp